Horizontal Alignment Tools

5.1 Introduction

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Create and store horizontal chains using MicroStation elements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Horizontal Alignment</td>
</tr>
<tr>
<td>Tool</td>
<td></td>
</tr>
<tr>
<td>Menu Bar Application</td>
<td>GEOPAK Road > Geometry > Layout Alignments Horizontal</td>
</tr>
</tbody>
</table>

The Horizontal Layout Tools enable the user to create or modify horizontal geometry (using numerous tools) including placing spirals, curves, tapers, specified bearings and curves, complex ramp loops and connectors, and all to user-defined parameters.

When selected, a dialog box is invoked that gives the user a chance to utilize either GEOPAK 98 (Graphic Element Based) or GEOPAK 2000 (COGO Element Based) design tools as depicted below.

![GEOPAK Alignment Startup Option](image)

NOTE: When set to COGO Element Based (New), an active session of COGO must be active.

Once Horizontal Alignment Generator is selected, the dialog box below appears.
When User > Preferences is selected the User Preferences dialog box below appears and allows the user to set certain preferences.

The Design Tables option allows the user to set up Design Tables for Symmetrical 3 Centered Curves, Asymmetrical 3 Centered Curves, Taper Curves, and Spiral Curves. These files are stored in an ASCII format.

The Tools option allows the user to open the Main dialog box or any of the dialog boxes needed to store a Horizontal Alignment.

Values within the dialog boxes dynamically change simultaneously with dynamic graphic modifications.

Spiral and compound curve commands do not support dynamic manipulation.
5.2 Lines / Curves Tools

The Place Line / Curves Commands are detailed in the table below.

- **Store Line By 2 Points**
 The store line by two points command requires two new points and a new line. The command draws the line and the new points.

- **Store Tangent Line**
 The Store Tangent Line tool stores a line and its two endpoints in the coordinate geometry database.

- **Store Curve By 3 Points**
 The Store Circular Curve by Three Points tool stores a circular curve (using chord definition).

- **Store Curve By Center**
 This tool enables the user to store a circular curve by defining the center point, radius, and sweep angle.

- **Store Tangent Curve Unconstrained**
 The Store an Unconstrained Tangent Curve tool places a curve through a specified point tangent to the specified curve or line.

- **Place Curve Between Two Elements**
 This tool enables the user to store a circular curve between two elements. Options include offsets, truncate, and the ability to modify once the first curve is displayed.

- **Place Simple Transition Element**
 This tool enables the user to draw a transition element between two arcs. Options for the Transition element include: Tangent, Curve, or Spiral. As the Transition option is changed, the dialog box dynamically changes to reflect the selection.
5.3 Curve Combinations Tools

The Curve Combinations Commands are detailed in the table below.

Place Compound Curves
This tool enables the user to draw a compound curve between two elements.

Place Three Centered Curves
This tool enables the user to draw a three-centered curve between two elements. The Design Vehicles group enables the user to select the desired vehicle, based on the data from files stored in the User Preferences.

Place Reverse Curves
This tool enables the user to store reverse curves between two elements. An option is supported for an intermediate user-defined Tangent Length.

Place Taper Curves
This tool enables the user to draw taper curves between two elements. The Design Vehicles group enables the user to select the desired vehicle, based on the data from files stored in the User Preferences.

5.4 Spiral Combinations Tools

The Curve Combinations Commands are detailed in the table below.

Place SC Tangent To Line
This tool enables the user to store a spiral / curve combination tangent to a line.

Place ST Tangent To Curve
This tool enables the user to store a spiral / tangent combination tangent to a curve.

Place SC Tangent To Curve
This tool enables the user to store a compound spiral / curve combination tangent to a curve.

Place SCS (Intersecting Elements)
This tool enables the user to store a spiral / curve combination tangent to a line. The Design Table enables the user to select the desired Design Speed / Lanes and Degree based on the data from files stored in the User Preferences.

Place STS (Disjoint Curves)
This tool enables the user to store a spiral tangent spiral combination tangent between two elements.

Place SCS (Disjoint Curves)
This tool stores a spiral curve spiral combination between two curves. Note the tool also works with overlapping curves. The Design Table enables the user to select the desired Design Speed / Lanes and Degree or Radius based on the data from files stored in the User Preferences.
5.5 Complex Transitions Tools

The Complex Transitions Commands are detailed in the table below.

- **Place Complex Ramp**
 This versatile tool enables the user to draw simple to complex ramp geometry.

- **Place Ramp Connector**
 This versatile tool enables the user to draw simple to complex ramp connectors, with a variety of options.

5.6 Alignment Tools

The Alignment Commands are detailed in the table below.

- **Place Dynamic Alignment**
 The first Alignment tool is placing a dynamic alignment. You initially select and accept a beginning element. By moving the cursor, the length of curve and dynamic ahead element change. Continue placing data points to create curves and intermediate tangents. At any time during the process, the Entry Radius may be changed. Any subsequent curves are placed with the revised Radius.

- **Store Chain**
 The second Alignment tool is storing a chain comprised of graphical elements. This works similar to Automatic Create Complex Chain, while the chains are automatically being stored into the COGO database file.
5.7 Manipulate Tools

The Manipulate Commands are detailed in the table below.

Move Plan View Element
The Move Plan View Element enables the user to move / translate an element or to make copies.

Rotate Plan View Element
The Rotate Plan View Element rotates the selected element about a user-defined point. The Angle may be manually entered and locked, or dynamically changing.

Extend Plan View Element
The Extend Plan View Element tool can extend or shorten any element.

Delete Element
When using the Delete Element tool, no tool settings dialog box opens. Select and accept the element to be deleted. The element is removed from the coordinate geometry database. This tool works with a MicroStation selection set if present. **Warning:** there is no undo for this command.
LAB 5: Horizontal Alignment Tools

5.1 Accessing Horizontal Alignment Tools

Step 1. Execute C:\data\geo\VDOT\road1\LAB5.EXE.

Step 2. Open the MicroStation file c:\data\geo\VDOT\road1\d17682des.dgn.

Access Project Manager. It should automatically access the Road workflow dialog box since we “remembered” the options in Exercise 2.

Step 3. Select the Horizontal Alignment icon from the Road Project: 17682.prj workflow dialog box.

Step 4. You will see the following dialog box:

Set the option to COGO Element Based (NEW) as shown and press OK.

Step 5. You will see the following dialog box. Click YES.

Step 6. You will see the following dialog box. Click YES.
Step 7. Activate COGO by pressing OK on the next dialog box.

Step 8. Enable **Permanent Visualization**, then you can either move the COGO window out of the way or “sink” it using the Bentley icon.

Step 9. You should now see the Horizontal Alignment Generator menu bar.

5.2 Preferences

Step 1. Use the File > Preferences pulldown to access the Preferences dialog box. Select the option for COGO Element Names and complete the dialog box as shown.
Step 2. Select the **Curve Design Tables** option. Using the **Files** button, select the appropriate file for each option. The files are located in the following directory:

```
C:\data\geo\vdot\road1\standards\geopak\n```

<table>
<thead>
<tr>
<th>Symmetrical 3 Centered Curve Design Table</th>
<th>HA_3CenteredCurve_Symmetrical_2001English.tbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetrical 3 Centered Curve Design Table</td>
<td>HA_3CenteredCurve_Asymmetrical_2001English.tbl</td>
</tr>
<tr>
<td>Tapered Curve Table</td>
<td>HA_TaperCurve_2001English.tbl</td>
</tr>
</tbody>
</table>

Step 3. Select the **Spiral Design Tables** option. Using the **Files** button, select the appropriate file. The file is located in the following directory:

```
C:\data\geo\vdot\road1\standards\geopak\n```

| Spiral Design Table | HA_Spiral_Rural_VDOTEnglish.tbl |

When complete, dismiss the dialog box by pressing the “X” in the upper corner.

5.3 Store a Complex Ramp

Step 1. Use the **Tools > Complex Transitions** pulldown to access the following menu bar:

```
Comp...X
```

Step 2. Select the first of the two icons to access the **Place Complex Ramp** dialog box and fill out the dialog box as shown below:
Step 3. Chains MAINLINE and EBL460 should be visualized in the design file from our previous exercise. Use your cursor to ID chain MAINLINE with a datapoint, then issue another datapoint to accept it.

Next, use your cursor again to ID chain EBL460 with a datapoint.

The ramp will now dynamically visualize.

NOTE: As you move the cursor into any of the 4 quadrants of the intersection of the two alignments, the ramp will re-calculate and re-visualize in that quadrant.

Step 4. Issue a datapoint in the westernmost quadrant to store the ramp as shown in the diagram below:

Step 5. Dismiss the Complex Ramp dialog box and review the COGO output window. Notice that the 3 curves were automatically stored into the COGO database.
Step 6. Use the **Tools > Alignment** pulldown to access the following menu bar:

![Alignment Menu](image1)

Step 7. Select the second of the two icons to access the **Store Chain** dialog box. Fill out the dialog box as shown below:

![Store Chain Dialog](image2)

Step 8. With your cursor, issue an initial datapoint to **ID** the northernmost curve of the ramp. Issue a second datapoint to accept it.

Step 9. The entire chain will highlight and you’ll see some directional arrows. Issue another datapoint to accept the direction of the chain.

Step 10. Dismiss the **Store Chain** dialog box. Review the output in **COGO** and notice the chain **RAMPA** has been stored into **COGO**.

![COGO Output](image3)
Step 11. Save your input file.

Step 12. Exit COGO.

Step 13. Exit MicroStation.